
How we walk: from underlying 
neurophysiology to gait disorders

Abstract
Gait disorders are a frequent feature of neurology clinics, and are becoming 
more prominent within an ageing population. Gait is controlled by deep, 
evolutionarily ancient systems working in unison, predicting and enacting a 
walking model. Naturalistic gait involves multi-tasking and responding to envi-
ronmental challenges, requiring higher cognitive processing. The control of 
gait is highly interconnected and so gait disorders may result from a wide array 
of neurological insults. This review provides a succinct summary of the under-
lying neurophysiology of gait for the busy clinician. We explore the neural 
networks controlling walking, from automated spinal cord networks through 
to cortical planning. Throughout, we highlight clinical phenotypes resulting 
from injury at each anatomical level and discuss future directions for the field.

Introduction

Gait disorders carry significant functional ramifications and are very 
common, affecting ~35% of those aged 70 and older [1] and ~60% of 
neurology inpatients [2]. The examination of gait is a critical part of 

the neurological examination (Table 1)[3–6], informing diagnosis and reha-
bilitation. Gait characteristics may also have a role in prognostication, such 
as assessing dementia risk [7]. In this context, it is increasingly important for 
clinicians to understand the neural control for gait and how pathology may 
result. We will tackle the network anatomically, and start close to our effector 
muscles, deep within the spinal cord (Figure 1).  

Spinal central pattern generators activate muscles
Walking requires coordination of many muscle groups across multiple joints. 
This can be orchestrated by the spinal cord as was shown by the seminal 
work of Graham Brown in 1911, where decerebrated cat preparations had the 
same phases of movement with and without their dorsal roots severed [8]. 
This demonstrated that there are networks within the spinal cord capable of 
generating walking movements. These networks are central pattern generators 
(CPGs), and are composed of rhythmically firing interneurons. There are flex-
or-extensor CPGs for intralimb coordination, and left-right CPGs to coordinate 
the legs [9]. Initially CPGs were conceptualised as reciprocally inhibiting 
groupings (or “half-centres”) of interneurons, but these concepts have evolved 
to consider separate rhythm- and pattern-generating circuitry [10,11]. A recent 
phase I/IIa clinical trial for patients with motor complete spinal cord injury 
used Spinalon™ (buspirone/levodopa/carbidopa) to target CPGs. Excitingly, 
some patients demonstrated rhythmic flexor-extensor activity, supporting a 
role for CPGs in humans [12]. Proprioceptive and cutaneous sensory afferents 
feed into spinal networks, including CPG interneurons [13]. They influence 
the timing and amplitude of locomotive activity, and are important for regu-
lating the stance and swing phases [13]. Impairment of sensory pathways can 
lead to a sensory ataxic gait, as described in Table 1. Damage to the spinal 
cord itself may instead cause a spastic gait. Spasticity has multiple underlying 
mechanisms, but loss of reticulospinal inhibition to stretch reflex arcs is a 
significant factor [14]. In summary, CPGs are spinal interneuron networks 
that coordinate intralimb and interlimb movements and, in some mammals, 
stimulation can drive walking. 

The mesencephalic locomotor region - control of spinal central pattern 
generators
The automatic processes of CPGs require supraspinal modulation. An area 
within the midbrain and upper brainstem named the mesencephalic loco-
motor region (MLR) was proposed as a key initiator for gait, following elec-
trical stimulation experiments eliciting controlled walking and running in a 
cat [15]. The MLR involves neurons within the pedunculopontine (PPN) and 
cuneiform nuclei (CnF), with input from the basal ganglia, amygdala, bed 
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nucleus of the stria terminalis and lateral hypo-
thalamus [16]. The functions of the MLR range 
from postural tone to controlling the initiation, 
rhythm and speed of gait [17,18]. Overall, 
the CnF is associated with fast movements 
and the PPN with slower movements (Figure 
2), though analysis of cellular subpopulations 
adds greater detail. Glutamatergic neurons in 
the CnF are associated with initiating gait 
and promoting faster walking while glutama-
tergic (and to some extent cholinergic) PPN 
neurons may promote slower walking [19,20] 
or support the stance phase [21,22]. An MLR 
GABAergic neuronal population inhibits loco-
motion [23]. The outputs from the PPN and 
CnF may also differ, with the CnF having a 
more localised output while the PPN may 
form more widespread networks, including 
with the basal ganglia and spinal networks via 
the reticulospinal tract [22]. Overall, the MLR 
and brainstem nuclei adjust CPG activity via 
the reticulospinal tract, vestibulospinal tract, 
tectospinal tract and monoaminergic path-
ways [16]. The PPN has become an experi-
mental target for deep brain stimulation (DBS), 
with results highly variable between patients, 
although showing potential improvements for 
gait freezing and falls for some [24]. The MLR 
together has a role in initiating locomotion, 
with its constituent nuclei potentially favouring 
escape (CnF) and exploratory (PPN) behav-
iour [21]. 

Cerebellum coordinates walking and 
responds to challenges
Cerebellar lesions cause an ataxic gait, charac-
terised by disordered multi-joint coordination. 
This highlights the role of the cerebellum in 
the control of limb movements and balance 
[25]. Lesions affect multi-joint functionality 
rather than specific muscles, or in other words 
cerebellar regions control actions rather than 
muscles in anatomical proximity [26,27].  The 
cerebellum projects largely to the brainstem, 
thalamus and spinal cord; direct projections 
which may be of importance for gait include 
from the fastigial nucleus to the vestibular 
nuclei and spinal cord, and from the dentate 
nucleus to the reticular nuclei [26].
   The role of the cerebellum in coordination 
relies on its ability to learn motor sequences, 
preventing the need to consciously decompose 
every action. This learning occurs at Purkinje 
cells, which integrate information from two 
key cell types: climbing fibres (from the infe-
rior olive) and granule cells with their parallel 
fibres (receiving input from mossy fibres) 
(Figure 3). Parallel fibres relay an efference 
copy of motor commands and provide sensory 
context. A single climbing fibre wraps itself 
like ivy around a Purkinje cell, provides error 
feedback (a teaching signal), and its firing 
triggers a Purkinje cell action potential [28,29]. 
Learning occurs through climbing fibre acti-
vation depressing simultaneous parallel fibre 
inputs, termed long-term depression (LTD) 
[30,31]. Disruption of LTD has been shown to 

specifically impact the adaptability of gait [32]. 
The cerebellum is important for responding to 
unexpected challenges to gait in humans: cere-
bellar patients respond irregularly to alterations 
in treadmill speed, while controls respond in 
rhythm with the normal locomotor cycle [33].
   The cerebellum may also influence the 
initiation of gait. Stimulation of a restricted 
region of midline cerebellar white matter (the 
hook bundle of Russell) produced well-coordi-
nated, bilaterally symmetrical, fore- and hind-
limb movements in a supported decerebrated 
cat. This was evident even with MLR ablation 
[34], indicating that this ‘cerebellar locomotor 
region (CLR)’ may act through an independent 
pathway to the MLR. Overall, the cerebellum 
acts to coordinate multi-joint movements and 
respond to postural challenges.

Basal ganglia may select motor commands, 
adjust movements, deliver action motiva-
tion, and/or contribute to motor learning
The basal ganglia (BG) are central to the under-
standing of movement disorders: substantia 
nigra atrophy and dopamine loss in Parkinson’s 
disease is associated with a paucity of move-
ment (including shuffling gait), while striatal 
degeneration is associated with hyperkinesis 
in Huntington’s disease [35]. The BG do not 
initiate movement, as the output region of 
the BG, the internal globus pallidus, is active 
after the onset of muscle contraction. The 

anatomical circuitry of the BG has favoured a 
‘brake-accelerator model’: an indirect pathway 
(striatum D2 to external pallidum to subtha-
lamic nucleus to internal pallidum) inhibits 
the thalamus, while a direct pathway (striatum 
D1 to internal pallidum) releases this inhibition 
(Figure 4). Running with this model, the BG 
may disinhibit the desired movement while 
inhibiting undesired movements [36]. One 
supportive example is how GABAergic fast-
spiking interneurons (FSIs) in the striatum 
fire when a chosen action is initiated and a 
highly trained alternative is suppressed [37]. 
The BG project to the MLR and can activate 
or suppress MLR glutamatergic neurons, as 
would be required for such a model [23]. 
However, some have argued that the BG may 
not be active early enough in movement plan-
ning for this role [38]. The BG have also been 
proposed to adjust the speed and size of 
movement, which may account for the signs of 
bradykinesia, micrographia and hypophonia 
in Parkinson’s disease [39]. Alternatively, the 
BG may be involved in movement cost-reward 
calculations, and so influence motivation or 
vigour [38]. This may explain how people with 
Parkinson’s disease may be capable of moving 
as quickly as healthy individuals, but are natu-
rally bradykinetic[38,40]. The BG further act 
in procedural learning (rather than retention 
or recall)[38], with long term potentiation 
and depression occurring in the striatum [41]. 

Figure 1: The roles of neural networks involved in gait - Spinal CPGs activate muscles via motor neurons, and coordinate multiple 
muscle groups to walk. The MLR is an initiator of gait and a controller in the process of walking. The cerebellum supports multi-
joint functionality and can adapt and respond to external challenges to gait as they develop. he basal ganglia may regulate and 
adjust motor programmes, deliver the motivation or vigour for movement, and support procedural learning. The cortex inte-
grates internal and external motivators to walk, with the premotor area generating motor commands and the prefrontal cortex 
involved in planning and cognitive control. The primary motor cortex delivers precise limb movements. CPG = central pattern 
generator; MLR = mesencephalic locomotor region, PFC = prefrontal cortex, SMA/PMA = premotor area including supplementary 
motor area, M1 = primary motor cortex, BG = basal ganglia; Figure incorporates 10.5281/zenodo.4724290 from Jon Perdomo on 
Scidraw.io.



Altogether, the roles of the BG may include 
selecting desired motor commands, adjusting 
the speed and size of movements, delivering 
the motivation or vigour for movement, and/or 
motor learning.

Cortex - deciding to walk
The cortex acts in the preparation, decision 
and initiation phases of gait. It weighs up the 
motivational drive to walk with the social 
and environmental context. The prefrontal 
cortex (PFC) is a key region for this goal-di-
rected executive decision making [16,42]. The 
supplementary motor areas (SMA) and other 
premotor area (PMA) regions generate the 
motor commands following communication 
from the PFC. This is conveyed by corticoretic-
ular fibres to the MLR and brainstem reticular 
formation, and in turn to CPGs. In parallel, 
the SMA/PMA communicates with M1, which 
controls foot and precise limb movements via 

the corticospinal tract [16,17] (Figure 1). This 
spreading recruitment of cortical regions can 
be seen on electroencephalography (EEG) and 
is termed the Bereitschaftspotential or readi-
ness potential (RP), and is seen approximately 
two seconds prior to movement [43,44]. Of 
note, sensory information about the external 
environment, and the location of the body 
within it, requires input from all sensory modal-
ities. Significant sensory processing occurs in 
the parietal cortex [16,45]. In keeping with the 
role of the cortex in the initiation of gait, higher 
level gait disorders (HLGD) have a phenotype 
including hesitant starts and turns [6,46]. 
   M1 is active during the conscious drive to 
move, particularly for fine motor tasks. It has a 
somatotopic architecture (homunculus), with 
specific M1 regions linked with movements of 
distinct regions of the body [47]. Giant pyram-
idal neurons characterise M1, and these fast 
acting neurons synapse directly on anterior 

horn motor neurons or on associated spinal 
interneurons, enabling rapid and specific 
movements [48].The corticospinal tract is not 
however composed solely of M1 axons, but 
includes axons from the SMA, superior parietal 
lobule and primary somatosensory cortex [4]. 
Similarly not all M1 pyramidal neurons project 
to the corticospinal tract: some have projec-
tions across the cortex, basal ganglia, cere-
bellum and brainstem [49], some projecting 
to multiple distant sites [50]. Additionally, 
there may be highly connected control areas 
interspersed between motor control regions 
in M1. This new model (proposed by Gordon 
et al., Nature 2023) offers a tantalising means 
by which motor commands may be integrated 
with whole-body, metabolic and physiological 
control [51].  

The SMA/PMA are important for motor 
programming and generating motor 
commands. The premotor area has been asso-
ciated with sequencing tasks and reward-di-
rected movements (specifically pre-SMA and 
dorsal premotor areas) [52].  These regions 
are important for switching away from routine 
movements when the environment changes 
and that routine is no longer appropriate [53]. 
The SMA helps prepare for the centre of gravity 
moving during walking (anticipatory postural 
adjustment)[16]. The caudal premotor area 
including the SMA maintains a somatotopic 
representation, although not as clear as that 
of M1.

The PFC has widespread functions in gait 
as an executive region, with roles in decision 
making, attention, working memory, plan-
ning task sequencing and personality [16,42]. 
Increased PFC activation has been consistently 
noted in dual task walking, reflecting its role 
in attention. Unlike walking on a treadmill in 
a controlled setting, navigating the real world 
requires a constant interplay between planning 
and execution: we avoid static and moving 
obstacles, often while talking. The gait pattern 
of healthy young adults changes when dual 
tasking; this would only be expected if higher 
cognitive attention is required for walking [54]. 
For those with stroke, multiple sclerosis, or 
in healthy older adults, even normal walking 
has been associated with increased PFC acti-
vation, which may represent a compensatory 
mechanism [49,50]. The PFC is integrated 
into the limbic or emotional network through 
connections with the hypothalamus and peri-
aqueductal grey, critical for goal-directed 
naturalistic walking [16]. Further centres 
included in this network are the amygdala, 
hippocampus and nucleus accumbens, incor-
porating emotional drivers for gait. 

An exceptional recent review (Gait control 
by the frontal lobe, Handbook of Clinical 
Neurology, Takakusaki) highlighted how the 
prefrontal and premotor areas have exten-
sive connectivity across the central nervous 
system. Key pathways include a parieto-pre-
frontal (‘where’) pathway transferring spatial 
information to the PFC and a parieto-premotor 

Figure 4: Traditional concept of basal ganglia circuitry - direct and indirect pathways. Green arrows indicate excitatory gluta-
matergic pathways, while red arrows indicate GABAergic inhibitory pathways. D1 and D2 indicate dopamine receptor subtypes. 
This is known to be a simplification, with further modulatory transverse pathways present, e.g. see Lanciego et al., 2012 [75].  
Abbreviations: eGP = external globus pallidus, iGP = internal globus pallidus, SNc = substantia nigra pars compacta, SNr = 
substantia nigra pars reticulata, STN = subthalamic nucleus 

Figure 2: Diagram illustrating how MLR consists of CN and 
PPN with closely intertwined functionality. MLR = mesen-
cephalic locomotor region, CN = cuneiform nucleus, PPN = 
pedunculopontine nucleus

Figure 3: Diagrammatic illustration of cerebellar cortex cells 
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Table 1: Characteristics of classical gait disorders and their causes

Gait Characteristics Causes include

Broad-based ataxic gaits

Sensory ataxic gait (including a stomping gait) Broad-based. Impaired tandem gait. May watch feet when 
walking. Gait and stability worsens when eyes are closed. 
Romberg’s test positive: will be able to stand with feet together 
and eyes open, but on closing eyes will sway significantly. May 
stamp feet against ground with increased force to compensate 
for a proprioception deficit. Abnormal head impulse test in 
vestibulopathy.

Sensory peripheral neuropathy or dorsal column disease: endocrine and 
metabolic (diabetes mellitus, hypothyroidism, renal failure, liver failure), 
nutritional (vitamin B12, B1, B6, E deficiency), toxic (alcohol, medications 
incl. isoniazid, amiodarone, chemotherapies), inflammatory (paraneoplastic, 
Sjögren’s, vasculitis), genetic (CMT, Friedreich’s ataxia), infections (HIV, 
leprosy, syphilis). 

Bilateral vestibulopathy.

Cerebellar ataxic gait Broad-based. Irregular step-length and rhythm. May sway. 
Inability to adapt to factors threatening stability, with instability 
worsening with abrupt changes such as standing from sitting or 
when quickly turning. Impaired tandem gait. Romberg negative 
(in contrast to sensory ataxic gait) – may be unable to stand with 
feet together with eyes open. If one cerebellar hemisphere is 
involved, there is deviation towards the affected side.

Cerebellar pathology: SOL and structural disease (neoplasm, Arnold-Chiari, 
AVM), toxic (alcohol, phenytoin, carbamazepine, lithium), inflammatory 
(MS, ADEM, paraneoplastic, Miller Fisher syndrome), vascular (infarction or 
haemorrhage), metabolic (hypothyroidism), nutritional (vitamin B12, E or 
copper deficiency, coeliac disease), genetic (SCA, Friedreich’s ataxia, ataxia 
telangiectasia, VHL), degenerative (MSA-C, prion).

Stiff (spastic) gaits

Scissor gait Spastic paraparesis results in a bilateral version of hemiplegic gait, 
with circumduction of both lower limbs. Thighs may be adducted 
together. Gait is effortful and may be described as ‘walking 
through mud’.

Spastic paraparesis from cord or parasagittal lesion: SOL and structural 
disease (neoplastic, syringomyelia, spinal degenerative disease, parasagittal 
meningioma), inflammatory (TM, MS, NMO, MOGAD, sarcoidosis), vascular 
(anterior spinal artery syndrome, AVM), genetic (HSP, adrenoleukodys-
trophy), infections (HIV, HTLV-1, syphilis), nutritional (vitamin B12 or copper 
deficiency), cerebral palsy, degenerative (MND).

Hemiplegic spastic gait Affected leg is stiff, with little flexion at hip, knee or ankle (power 
of extensor muscles great than flexors). To compensate, the leg 
is swung outward in a semicircle (circumduction). Foot may scuff 
the floor – shoes may have excessive wear around outer border 
and toes. Arm on affected side may also be stiff and weak, and 
may be flexed with altered swing (localising lesion to cervical 
cord or above).

Unilateral hemisphere, brainstem or cord lesion: SOL and structural disease 
(neoplastic, spinal degenerative disease), vascular (ischaemia or haemor-
rhage), inflammatory (TM, MS, NMO, MOGAD, sarcoidosis), degenerative 
(MND), hemiplegic cerebral palsy.

Shuffling gaits

Parkinsonian gait Small stepping, shuffling gait. Diminished arm swing. Turning en 
bloc. Base narrow or normal. Hesitation when starting to walk. 
Freezing may occur when approaching obstacles or during turns. 
Parkinson’s disease is typically asymmetric on onset and improves 
with visual or auditory cues. In more severe disease, festination 
(involuntary hastening of gait) may occur– as walking commences, 
the torso advances ahead of the lower limbs, leading to increas-
ingly fast and short steps.*

Differentials for parkinsonism: idiopathic PD (asymmetric), Parkinson’s plus 
syndromes (MSA, PSP, CBD, DLB), medication (dopamine antagonists), 
genetic (familial PD), Wilson’s, Huntington’s disease (akinetic-rigid variant), 
dopa-responsive dystonia

Higher level gait disorder (or gait apraxia or frontal gait) Small shuffling steps (‘marche à petits pas’). Difficulty initiating 
walking. Unstable and may have widened base (particularly in 
NPH). Typically preserved arm swing. Patients with frontal lobe 
disorders (including NPH) are able to perform the motions of 
walking when sitting or lying, but have difficulty when upright and 
attempting to walk. 

NPH, cerebral small vessel disease and other cortical, subcortical or 
network pathology including vascular causes, space occupying lesions or 
degenerative disease.

Twisting movements

Choreoathetotic and dystonic gaits Choreoathetosis is continuous irregular, jerking or twisting 
movements of face, neck, trunk and limbs. Dystonia results from 
co-contraction of antagonistic muscles and leads to twisting 
and repetitive movements and postures. Dystonic gait may have 
an abnormal foot posture, e.g. with plantar flexion, inversion 
and extension of the big toe. Dystonic postures may be trig-
gered by exercise. Worsened by walking on sides of feet. Geste 
antagoniste (sensory stimulation e.g. touching hair) may improve 
dystonic gait for some. 

Basal ganglia disorders including genetic conditions such as Huntington’s 
disease, vascular damage, immunological disease (e.g. Syndenham’s chorea, 
SLE, APLS, chorea gravidarum) and drug-related (including dopamine).

Characteristic gaits linked to muscle weakness or paralysis

Steppage gait (or foot drop gait) Foot drop is failure to dorsiflex the foot. Excessive flexion of 
the hip is required to compensate for foot drop to enable the 
foot to clear the ground during the swing phase. There may be 
foot slapping. 

Peroneal or L5 root damage classically - foot inversion is preserved in 
common peroneal palsy while weak in L5 radiculopathy (eversion weak in 
both). Foot drop may result from systemic neuropathies (e.g. diabetic, toxic, 
nutritional, inflammatory), radiculopathies, degenerative neuromuscular 
pathology (e.g. MND), genetic causes (such as CMT, spinal muscular atrophy 
or muscular dystrophies) or poliomyelitis.

Waddling gait Hips drop on the contralateral side to the weightbearing limb 
during walking (Trendelenburg sign). This results from proximal 
muscle weakness of the weightbearing limb, particularly the 
gluteal muscles. May have difficulty standing-up with arms folded.

Myopathies (incl. muscular dystrophies, inflammatory myopathies, drug-in-
duced myopathies), spinal muscular atrophy, lumbosacral nerve root 
damage, congenital dislocation of hips.

Unilateral falls

Unilateral falls Falls to one side. 
Vestibular disease: gait deteriorates with eye closure and 
Unterberger positive (when walking on spot with eyes closed, 
rotation to side of labyrinth dysfunction). Abnormal head impulse 
test.

Ipsilateral falls are associated with unilateral vestibular disease, cerebellar 
and medullary lesions. 
Thalamic damage is associated with contraversive falls (pusher syndrome). 
Tendency to fall backwards with midbrain lesions.

Other characteristic gaits

Cautious gait Slow gait with shorter steps and broader base. Improvement with 
mobility aids. 

Nonspecific response to perceived disequilibrium or fear of falling.

Antalgic gait Reduced stance phase on affected limb, leading to a limp. Pain of affected limb.

Functional gait disorder Variability. Improvement in gait when distracted. Internal incon-
sistency. May show instability, yet usually able to regain balance 
prior to falling. 

Functional neurological disorder.

*See Mermelstein et al., Pract Neurol 2024 [74] for discriminating atypical parkinsonian syndromes.

Abbreviations: ADEM = acute disseminated encephalomyelitis, APLS = antiphospholipid syndrome, AVM = arteriovenous malformation, CBD = corticobasal degeneration, CMT = Charcot-Marie-Tooth disease, 
DLB = dementia with Lewy bodies, MS = multiple sclerosis, MSA = multiple system atrophy, MSA-C = MSA with predominant cerebellar features, MND = motor neuron disease, MOGAD = myelin oligoden-
drocyte glycoprotein antibody disease, NMO = neuromyelitis optica, NPH = normal pressure hydrocephalus, PD = Parkinson’s disease, SCA = spinocerebellar ataxias, SLE = systemic lupus erythematosus, SOL = 
space-occupying lesion, TM = transverse myelitis
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