PathMaker Neurosystems Inc. (“PathMaker”), a clinical-stage bioelectronic medicine company developing breakthrough non-invasive systems for the treatment of patients with spasticity and paralysis has announced the first publication of clinical trial results for its MyoRegulator® device for the non-invasive treatment of spasticity. Published in Bioelectronic Medicine, the results provide the first clinical evidence using MyoRegulator to treat upper extremity spasticity in subjects with chronic stroke. MyoRegulator is an investigational medical device and is limited by US Federal law to investigational use only.
Spasticity is a chronic condition characterised by painful muscle contractions and is common in patients suffering from stroke, cerebral palsy, multiple sclerosis, spinal cord injury, traumatic brain injury and other neurological disorders. Management of spasticity is a difficult challenge and is currently managed primarily by pharmacological agents and injected botulinum neurotoxins, and there is tremendous unmet medical need. MyoRegulator is a first-in-class non-invasive device based on PathMaker’s proprietary DoubleStim™ technology (combining anodal trans-spinal direct current stimulation (tsDCS) and peripheral nerve direct current stimulation (pDCS)), which provides simultaneous non-invasive stimulation intended to suppress hyperexcitable spinal neurons involved with spasticity.
“Current pharmacological approaches to managing spasticity have, at best, short-term efficacy, are confounded by adverse effects, and are often unpleasant for the patient,” said co-author Zaghloul Ahmed, Ph.D., Professor and Chairman, Department of Physical Therapy and Professor, Center for Developmental Neuroscience, CUNY and Scientific Founder of PathMaker Neurosystems. “The initial study results demonstrate the potential of a novel, non-invasive treatment to reduce spasticity and improve functional recovery in patients with upper motor neuron syndrome after stroke.”
The publication, Non-Invasive Treatment of Patients with Upper Extremity Spasticity Following Stroke Using Paired Trans-spinal and Peripheral Direct Current Stimulation, was authored by researchers at Feinstein Institute for Medical Research at Northwell Health (Manhasset, NY) led by Bruce Volpe, M.D. The study included patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke in a single-blind, sham-controlled, crossover design study to test whether MyoRegulator treatment reduces chronic upper-extremity spasticity.
Twenty subjects received five consecutive 20-minute daily treatments with sham stimulation followed by a 1-week washout period, then five consecutive 20-minute daily treatments with active stimulation. Subjects were told that the order of active or sham stimulation would be randomized. Clinical and objective measures of spasticity and motor function were collected before the first session of each condition (baseline), immediately following the last session of each condition, and weekly for 5 weeks after the completion of active treatments. The results demonstrated significant group mean reductions from baseline in both Modified Tardieu Scale scores (summed across the upper limb, P<0.05), and in objectively measured muscle resistance at the wrist flexor (P<0.05) following active treatment as compared to following sham treatment. Motor function also improved significantly (measured by the Fugl-Meyer and Wolf Motor Function Test; P<0.05 for both tests) after active treatment, even without additional prescribed activity or training. The effect of the active MyoRegulator treatment was durable for the 5-week follow-up period.
We are highly encouraged by these clinical results which demonstrate the potential of MyoRegulator to improve outcomes for patients suffering from spasticity, without the need for surgery or drugs. Building on these results and our ongoing clinical trial in Europe, we expect to initiate a US multi-center, pivotal, double-blind clinical trial supported by the National Institute of Neurological Disorders and Stroke (NINDS) in early 2020.
Nader Yaghoubi, M.D., Ph.D., President and Chief Executive Officer of PathMaker
About PathMaker Neurosystems Inc.
PathMaker Neurosystems is a clinical stage bioelectronic medicine company developing breakthrough non-invasive systems for the treatment of patients with chronic neuromotor conditions. With offices in Boston (US) and Paris (France), we are collaborating with world-class institutions to rapidly bring to market disruptive products for treating spasticity, paralysis and muscle weakness. In January 2019, we announced a collaboration and distribution agreement with WeHealth Digital Medicine to commercialise the MyoRegulator® device worldwide, excluding US and Japan territories retained by PathMaker. More than 48 million patients in the US, Europe and China suffer disabilities due to stroke, cerebral palsy, multiple sclerosis, spinal cord injury, traumatic brain injury, Parkinson’s disease and other neurological disorders. At PathMaker, we are opening up a new era of non-invasive neurotherapy for patients suffering from chronic neuromotor conditions. For more information, please visit the company website at www.pmneuro.com.
Source: PathMaker Neurosystems Inc.